EECS 221

S.P. 2-H

A vector field is given by: $\mathbf{A} = \rho \cos^2 \phi \, \hat{\mathbf{a}}_{\rho} - \rho \cos \phi \sin \phi \, \hat{\mathbf{a}}_{\phi} + z \, \hat{\mathbf{a}}_z$. Find the flux $\oint_{S} \mathbf{A} \cdot \mathbf{ds}$, where *S* is the bounding surface of a cube over the range $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$

S.P. 2-I

Find the value of $\oint_{S} \mathbf{A} ds$, where $\mathbf{A} = \rho^{2} \hat{\mathbf{a}}_{\rho} + z^{2} \hat{\mathbf{a}}_{z}$, where *S* is the a cylinder of radius 2, centered along the z axis, and extending from z = 0 to z = 3. Also, what is the average value of **A** on this surface?